Reactions of $\mathrm{Ru}(\mathrm{CO}) \mathbf{C l H}\left(\mathrm{C}_{5} \mathrm{H}_{\mathbf{5}} \mathbf{N}\right)\left(\mathrm{PPh}_{3}\right)_{\mathbf{2}}$ with 1-alkynes

Antonio Romero, Amelia Santos, * Javier López
Instituto de Ciencia de Materiales de Madrid, Sede D, CSIC, Serrano 113, 28006 Madrid (Spain)

and Antonio M. Echavarren *

Instituto de Quimica Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)
(Received February 7th, 1990)

Abstract

$\mathrm{Ru}(\mathrm{CO}) \mathrm{ClH}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ reacts with an equivalent of a monosubstituted alkyne in dichloromethane to give alkenyl derivative $\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}((E) \mathrm{HC}=\mathrm{CHR})$ $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{R}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}, \mathrm{CMe}_{3}, \mathrm{Ph}, \mathrm{COOMe}, \mathrm{COOEt}\right)$, resulting from a cis-insertion of the alkyne into the $\mathrm{Ru}-\mathrm{H}$ bond. The reaction of the ruthenium hydride with an excess of an activated alkyne $\mathrm{HC} \equiv \operatorname{CCOOR}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$ in methanol under reflux yields the bis-insertion derivative $\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}[\mathrm{RO}-$ $\mathrm{O} \mathrm{CC}=\mathrm{CHCH}=\mathrm{CHCOOR}]\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{R}=\mathrm{Me}, \mathrm{Et})$.

Introduction

We recently described the reactions of neutral and cationic ruthenium hydrido complexes $\mathrm{Ru}(\mathrm{CO}) \mathrm{ClH}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{~L}\left(\mathrm{~L}=\mathrm{PPh}_{3}, \mathrm{Me}_{2} \mathrm{Hpz} ; \mathrm{R}=\mathrm{Ph}, p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ and $\left[\mathrm{Ru}(\mathrm{CO}) \mathrm{H}(\mathrm{MeCN})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{A}\left(\mathrm{A}=\mathrm{ClO}_{4}, \mathrm{PF}_{6}\right)$ with alkynes [1-6]. The reaction generally involved insertion of the alkyne into the $\mathrm{Ru}-\mathrm{H}$ bond, although in some instances bis-insertion derivatives [3,5,7] or unexpected products [4,5] were also isolated. We describe here a series of new alkenyl ruthenium complexes derived from the new neutral ruthenium complex $\mathrm{Ru}(\mathrm{CO}) \mathrm{ClH}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (1) by reaction with 1 -alkynes $\mathrm{RC} \equiv \mathrm{CH}\left(\mathrm{R}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7}, \mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17}, \mathrm{CMe}_{3}, \mathrm{Ph}\right.$, COOMe, COOEt).

Results and discussion

The reaction of hydride 1 with 1-alkynes takes place readily in dichloromethane at $23-40^{\circ} \mathrm{C}$ to yield the (E)-alkenyl complexes $2-8$ in excellent yields (eq. 1). The stereochemistry of the alkenyl ligands was assigned on the basis of the ${ }^{3} J\left({ }^{1} \mathrm{H}^{1} \mathrm{H}\right)$
coupling constants, and is consistent with the cis-insertion of the 1 -alkyne into the $\mathrm{Ru}-\mathrm{H}$ bond observed with related ruthenium complexes $[1-6,8]$.
$\mathrm{Ru}(\mathrm{CO}) \mathrm{ClH}(\mathrm{py})\left(\mathrm{PPh}_{3}\right)_{2}+\mathrm{HC} \equiv \mathrm{CR} \rightarrow \mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}(\mathrm{HC}=\mathrm{CHR})(\mathrm{py})\left(\mathrm{PPh}_{3}\right)_{2}$
(2: $\mathrm{R}=\mathrm{n}-\mathrm{C}_{3} \mathrm{H}_{7} ;$ 3: $\mathrm{R}=\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} ;$ 4: $\mathrm{R}=\mathrm{n}-\mathrm{C}_{8} \mathrm{H}_{17} ; 5: \mathrm{R}=\mathrm{CMe}_{3} ; 6: \mathrm{R}=\mathrm{Ph} ; 7$: $\mathbf{R}=\mathrm{COOMe} ; \mathbf{8}: \mathbf{R}=\mathrm{COOEt}$)

The alkenyl ruthenium complexes obtained are six-coordinate species with a stereochemistry similar to that found in the analogous dimethyl pyrazole alkenyl ruthenium complexes [5], with mutually trans triphenylphosphine ligands and the alkenyl group cis to the carbonyl ligand, in an approximately octahedral coordination. The IR spectra showed $\boldsymbol{\nu}(\mathrm{C}=\mathrm{O})$ frequencies at $1910-1930 \mathrm{~cm}^{-1}$ for the pyridine complexes, similar to those observed for the dimethylpyrazole complexes (1923-1935 cm^{-1}); a trans stereochemistry between the CO and the alkenyl ligands shifts the $\nu(\mathrm{C}=\mathrm{O})$ frequency to $1990 \mathrm{~cm}^{-1}$ in the related complex $[\mathrm{Ru}(\mathrm{CO})(\mathrm{Me}-$ $\left.\mathrm{OOC}=\mathrm{CHCOOMe})(\mathrm{MeCN})_{2}\right] \mathrm{ClO}_{4}[6]$.

When the reactions of hydride 1 with an excess of methyl or ethyl propiolate were performed in methanol under reflux for 8 h , the bis-insertion derivatives $\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}[\mathrm{ROOCC}=\mathrm{CHCH}=\mathrm{CHCOOR}]\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{R}=\mathrm{Me}, 9 ; \mathrm{R}=\mathrm{Et}, 10)$ were obtained in $50-60 \%$ yield. These complexes were identical with those obtained in low yield from $\mathrm{Ru}(\mathrm{CO}) \mathrm{ClH}\left(\mathrm{PPh}_{3}\right)_{3}[3,7]$ and an excess of alkyne at room temperature. A higher temperature is probably required for the displacement of the coordinated pyridine from the insertion derivatives 7 and 8 by a second equivalent of the alkyne, which coordinates to the metal through the carbonyl oxygen [7].

Experimental

IR spectra were recorded on a Pye Unicam SP-3-300S spectrophotometer using KBr discs. Only the most significant IR frequencies are given in the details of the preparations. ${ }^{1} \mathrm{H}$ NMR spectra were measured on a Varian XL 300 (300 MHz) spectrometer in CDCl_{3} solutions containing tetramethylsilane as internal standard. ${ }^{13}$ C NMR spectrum was measured on a Bruker AM $200(50 \mathrm{MHz})$ in deuterochloroform solution with the solvent as internal standard.

All reactions were carried out under nitrogen. Dichloromethane was freshly distilled from CaH_{2} under argon. Elemental analyses were performed with a Perkin-Elmer 240C Elemental Analyzer.
$\mathrm{Ru}(\mathrm{CO}) \mathrm{ClH}\left(\mathrm{PPh}_{3}\right)_{3}$ was prepared as described previously [9].

$\mathrm{Ru}(\mathrm{CO}) \mathrm{ClH}(\mathrm{py})\left(\mathrm{PPh}_{3}\right)_{2}(1)$

A suspension of the hydride $\mathrm{Ru}(\mathrm{CO}) \mathrm{HCl}\left(\mathrm{PPh}_{3}\right)_{3}(1.19 \mathrm{~g}, 12.5 \mathrm{mmol})$ in ethanol $(100 \mathrm{ml})$ containing an excess of pyridine $(8.0 \mathrm{ml}, 106 \mathrm{mmol})$ was heated under reflux for 1 h . The resulting white solid was filtered off, washed with ethyl ether and hexane and dried under vacuum to give $1(585 \mathrm{mg}, 61 \%)$ as a white solid. A second crop ($117 \mathrm{mg}, 12 \%$) of hydride was obtained from the filtrate after evaporation and trituration of the residue with ethyl ether and hexane. Combined yield: 73\%. IR $\left(\mathrm{cm}^{-1}\right): 2008 \mathrm{~m}, 1937 \mathrm{vs}, 1558 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR: $\delta 8.78-8.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{py}), 8.40-7.92(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{py}), 7.60-7.54(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}), 7.27-7.18(\mathrm{~m}, 19 \mathrm{H}, 18 \mathrm{H} \mathrm{Ph}$ and 1 H py),
6.48-6.34 (m, $1 \mathrm{H}, \mathrm{py}), 6.32-6.20$ (m, $1 \mathrm{H}, \mathrm{py}),-13.52$ (t, $J=19.5 \mathrm{~Hz}, 1 \mathrm{H}$). Anal. Found: C, 65.37; H, 4.68; N, 1.81. $\mathrm{C}_{42} \mathrm{H}_{36} \mathrm{ClNOP}_{2} \mathrm{Ru}$ calcd.: C, $65.58 ; \mathrm{H}, 4.72 ; \mathrm{N}$, 1.82.

$\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{CH}=\mathrm{CHC}_{3} \mathrm{H}_{7}\right)(\mathrm{py})\left(\mathrm{PPh}_{3}\right)_{2}$ (2)

A solution of hydride $1(120 \mathrm{mg}, 0.16 \mathrm{mmol})$ and 1-n-pentyne $(0.016 \mathrm{ml}, 0.16$ mmol) in dichloromethane (20 ml) was stirred at $23^{\circ} \mathrm{C}$ for 1 h . The solvent was evaporated and the resulting solid was triturated with ethyl ether, filtered off, dissolved in dichloromethane, and precipitated with hexane to yield $2(130 \mathrm{mg}, 73 \%)$ as a pale yellow powder. IR (cm^{-1}): $2950 \mathrm{w}, 2910 \mathrm{w}, 1910 \mathrm{vs}, 1595 \mathrm{w}^{1}{ }^{1} \mathrm{H}$ NMR: δ 8.50-8.45 (m, $2 \mathrm{H}, \mathrm{py}$), $7.65-7.50(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}), 7.35-7.21$ (m, $7 \mathrm{H}, 6 \mathrm{H} \mathrm{Ph}$ and 1 H py), $7.21-7.16(\mathrm{~m}, 13 \mathrm{H}, 12 \mathrm{H} \mathrm{Ph}$ and $1 \mathrm{HCH}=$), $6.58-6.65(\mathrm{~m}, 2 \mathrm{H}$, py), $4.81-4.72$ (dm, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), $1.88-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.12-1.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 0.66 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. Found: C, $67.31 ; \mathrm{H}, 5.39 ; \mathrm{N}, 1.66$. $\mathrm{C}_{47} \mathrm{H}_{44} \mathrm{ClNOP}_{2} \mathrm{Ru}$ calcd.: C, 67.42; H, 5.30; N, 1.67.

$\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{13}\right)(\mathrm{py})\left(\mathrm{PPh}_{3}\right)_{2}(3)$

A solution of hydride 1 ($211 \mathrm{mg}, 0.27 \mathrm{mmol}$) and 1-n-octyne ($0.081 \mathrm{ml}, 0.55$ mmol) in dichloromethane (15 ml) was stirred at $23^{\circ} \mathrm{C}$ for 90 min . The mixture was concentrated to ca. 2-3 ml and treated with hexane. The solid was filtered off and washed with hexane to yield $3(175 \mathrm{mg}, 73 \%)$ as a pale yellow solid. IR (cm $\left.{ }^{-1}\right): 2950$ w, $2910 \mathrm{~m}, 1910 \mathrm{vs}, 1595 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR: $\delta 8.51-8.45$ (m, $2 \mathrm{H}, \mathrm{py}$), $7.55-7.49$ (m, 12 H, Ph), $7.33-7.21(\mathrm{~m}, 7 \mathrm{H}, 6 \mathrm{H} \mathrm{Ph}$ and 1 H py), $7.20-7.14(\mathrm{~m}, 13 \mathrm{H}, 12 \mathrm{H} \mathrm{Ph}$ and 1 $\mathrm{H} \mathrm{CH}=$), $1.88-1.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.23-1.00\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right), 0.82(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. Found: $\mathrm{C}, 68.17$; $\mathrm{H}, 5.74$; N, 1.60. $\mathrm{C}_{50} \mathrm{H}_{50} \mathrm{ClNOP}_{2} \mathrm{Ru}$ calcd.: C, 68.29; H, 5.73; N, 1.59.

$\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{CH}=\mathrm{CHC}_{8} \mathrm{H}_{17}\right)(\mathrm{py})\left(\mathrm{PPh}_{3}\right)_{2}$ (4)

A solution of hydride $1(144 \mathrm{mg}, 0.18 \mathrm{mmol})$ and $1-\mathrm{n}$-decyne ($0.07 \mathrm{ml}, 0.39$ mmol) in dichloromethane (15 ml) was stirred at $23^{\circ} \mathrm{C}$ for 90 min . The mixture was treated as above to yield $4(155 \mathrm{mg}, 91 \%)$ as a pale yellow solid with identical IR to that of 3. The ${ }^{1} \mathrm{H}$ NMR was also identical except for the multiplet at $1.23-1.00$ corresponding to $12 \mathrm{H}\left(6 \mathrm{CH}_{2}\right)$. Anal. Found: C, $68.79 ; \mathrm{H}, 6.01 ; \mathrm{N}, 1.55$. $\mathrm{C}_{52} \mathrm{H}_{54} \mathrm{ClNOP}_{2} \mathrm{Ru}$ calcd.: $\mathrm{C}, 68.82 ; \mathrm{H}, 6.00 ; \mathrm{N}, 1.54$.

$\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{CH}=\mathrm{CHCMe}_{3}\right)(\mathrm{py})\left(\mathrm{PPh}_{3}\right)_{2}$ (5)

A solution of hydride 1 ($105 \mathrm{mg}, 0.14 \mathrm{mmol}$) and 3,3-dimethyl-1-butyne (0.017 $\mathrm{ml}, 0.14 \mathrm{mmol})$ in dichloromethane (20 ml) was heated under reflux for 1 h , then evaporated. The residue was triturated with ethyl ether and the residual solid dissolved in dichloromethane and re-precipitated with hexane to give 5 ($81 \mathrm{mg}, 70 \%$) as a greenish-yellow powder. IR (cm^{-1}): $2950 \mathrm{~m}, 1930 \mathrm{vs}, 1595 \mathrm{w} .{ }^{1} \mathrm{H}$ NMR: δ 8.51-8.49 (m, $2 \mathrm{H}, \mathrm{py}$), $7.55-7.49(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}), 7.22-7.18(\mathrm{~m}, 7 \mathrm{H}, 6 \mathrm{H} \mathrm{Ph}$ and 1 H py), $7.17-7.11(\mathrm{~m}, 13 \mathrm{H}, 12 \mathrm{H} \mathrm{Ph}$ and $1 \mathrm{H} \mathrm{CH}=$), $6.60-6.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{py}), 4.82(\mathrm{dt}$, $J=16.2 \mathrm{~Hz}, 1.6 \mathrm{~Hz},=\mathrm{CH}$), $0.64\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CMe}_{3}\right.$). Anal. Found: C, $67.85 ; \mathrm{H}, 5.46 ; \mathrm{N}$, 1.66. $\mathrm{C}_{48} \mathrm{H}_{46} \mathrm{ClNOP}_{2} \mathrm{Ru}$ calcd.: C, 67.72; H, 5.45; N, 1.66.

$\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}(\mathrm{CH}=\mathrm{CHPh})(\mathrm{py})\left(\mathrm{PPh}_{3}\right)_{2}(6)$

A solution of hydride $1(100 \mathrm{mg}, 0.13 \mathrm{mmol})$ and phenylacetylene $(0.014 \mathrm{ml}, 0.13$ mmol) in dichloromethane (20 ml) was heated under reflux for 1 h . The solution was
evaporated and the residue was triturated with ethyl ether to give $6(97 \mathrm{mg}, 86 \%)$ as a crystalline light yellow solid. IR (cm^{-1}): $1920 \mathrm{vs}, 1593 \mathrm{~m}, 1540 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR: δ 8.75 (dt, $J=16.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), $8.53-8.51$ (m, $2 \mathrm{H}, \mathrm{py}$), $7.54-7.45$ (m, 12 H , $\mathrm{Ph}), 7.28-7.20(\mathrm{~m}, 7 \mathrm{H}, 6 \mathrm{H} \mathrm{Ph}$ and 1 H py$), 7.18-7.07(\mathrm{~m}, 14 \mathrm{H}, 12 \mathrm{H} \mathrm{Ph}$ and 2 H $\mathrm{PhCCH}), 6.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PhCCH}), 6.85(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H} \mathrm{PhCCH}), 6.58$ (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$ py), 5.78 (br d, $J=16.9 \mathrm{~Hz}, \mathrm{CH}=$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta 203.20$ (t, $J=14.5 \mathrm{~Hz}$), $154.00(\mathrm{~s}), 153.77(\mathrm{t}, J=14.5 \mathrm{~Hz}), 141.11(\mathrm{~s}), 138.34(\mathrm{~s}), 135.23(\mathrm{~s})$, 134.30 (t, $J=5.0 \mathrm{~Hz}, \mathrm{Ph}_{3} \mathrm{P}$), 132.47 (t, $\left.J=20.3 \mathrm{~Hz}, \mathrm{Ph}_{3} \mathrm{P}\right), 129.10$ (s, $\mathrm{Ph}_{3} \mathrm{P}$), 127.67 (s), 127.40 (t, J = $4.5 \mathrm{~Hz}, \mathrm{Ph}_{3} \mathrm{P}$), 124.19 (s), 123.61 (s), 123.40 (s). Anal. Found: C, 69.02; H, 4.89; N, 1.61. $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{ClNOP}_{2} \mathrm{Ru}$ calcd.: $\mathrm{C}, 68.92 ; \mathrm{H}, 4.87$; N, 1.61.

$\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}(\mathrm{CH}=\mathrm{CHCOOMe})(\mathrm{py})\left(\mathrm{PPh}_{3}\right)_{2}$ (7)

A solution of hydride $1(105 \mathrm{mg}, 0.14 \mathrm{mmol})$ and methyl propiolate $(0.012 \mathrm{ml}$, 0.14 mol) in dichloromethane (20 ml) was stirred at $23^{\circ} \mathrm{C}$ for 1 h . The solvent was evaporated and the residue was triturated with ethyl ether to give 7 ($98 \mathrm{mg}, 82 \%$) as a light yellow solid. IR $\left(\mathrm{cm}^{-1}\right): 2950 \mathrm{w}, 1928 \mathrm{vs}, 1686 \mathrm{~s}, 1599 \mathrm{w}, 1528 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR: δ 10.46 (dt, $J=16.8,1.9 \mathrm{~Hz}, \mathrm{CH}=$), 8.48-8.47 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{py}$), $7.48-7.41(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph})$, $7.30-7.22(\mathrm{~m}, 7 \mathrm{H}, 6 \mathrm{H} \mathrm{Ph}$ and 1 H py$), 7.21-7.14(\mathrm{~m}, 12 \mathrm{H}, \mathrm{Ph}), 6.62(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}$ py), 5.61 ($\mathrm{br} \mathrm{d}, J=16.8 \mathrm{~Hz}, \mathrm{CH}=$), 3.50 (s, $3 \mathrm{H}, \mathrm{Me}$). Anal. Found: C, $64.81 ; \mathrm{H}, 4.74 ; \mathrm{N}, 1.63 . \mathrm{C}_{46} \mathrm{H}_{40} \mathrm{ClNO}_{3} \mathrm{P}_{2} \mathrm{Ru}$ calcd.: $\mathrm{C}, 64.76 ; \mathrm{H}, 4.73$; N, 1.64.

$\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}(\mathrm{CH}=\mathrm{CHCOOEt})(\mathrm{py})\left(\mathrm{PPh}_{3}\right)_{2}$ (8)

A procedure analogous to that above gave 8 as a light yellow solid in 85% yield. IR (cm ${ }^{-1}$): $2950 \mathrm{w}, 2910 \mathrm{w}, 1920 \mathrm{vs}, 1680 \mathrm{~s}, 1598 \mathrm{w}, 1527 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR: $\delta 10.42$ (br $\mathrm{d}, J=16.6 \mathrm{~Hz}, \mathrm{CH}=), 8.48-8.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{py}), 7.48-7.42(\mathrm{~m}, 12 \mathrm{H} \mathrm{Ph}), 7.30-7.21$ (m, $7 \mathrm{H}, 6 \mathrm{H} \mathrm{Ph}$ and 1 H py), $7.20-7.14(\mathrm{~m}, 12 \mathrm{H} \mathrm{Ph}), 6.62(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$ py), $5.59(\mathrm{dt}, J=16.6,1.5 \mathrm{~Hz}, \mathrm{CH}=), 3.95\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}$ $3 \mathrm{H}, \mathrm{CH}_{3}$). Anal. Found: C, 65.18; H, 4.90; N, 1.62. $\mathrm{C}_{47} \mathrm{H}_{42} \mathrm{ClNO}_{3} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 65.09$; H, 4.88; N, 1.61.

$\mathrm{Ru} \bar{u}(\mathrm{CO}) \mathrm{Cl}\left[\mathrm{MeOOCC}=\mathrm{CH}-\mathrm{CH}=\mathrm{CHCOOMe}\left(\mathrm{PPh}_{3}\right)_{2}(9)\right.$

A suspension of hydride $1(312 \mathrm{mg}, 0.4 \mathrm{mmol})$ and methyl propiolate $(0.14 \mathrm{ml}$, 1.6 mmol) in methanol (50 ml) was heated under reflux for 8 h . The resulting yellow solid was filtered off, washed with methanol and ethyl ether, and dried to give 9 ($170 \mathrm{mg}, 49 \%$). A second fraction was obtained from the filtrate after evaporation and treatment with hexane ($31 \mathrm{mg}, 9 \%$; combined yield: $201 \mathrm{mg}, 58 \%$). The product was identical with that obtained from $\mathrm{Ru}(\mathrm{CO}) \mathrm{ClH}\left(\mathrm{PPh}_{3}\right)_{3}$ [3,7]. The corresponding reaction of ethyl propiolate gives $\mathrm{Ru}(\mathrm{CO}) \mathrm{Cl}[\mathrm{EtOOCC}=\mathrm{CH}-\mathrm{CH}=\mathrm{COOEt}]\left(\mathrm{PPh}_{3}\right)_{2}$ (10) in 55% yield, identical with that prepared from $\mathrm{Ru}(\mathrm{CO}) \mathrm{ClH}\left(\mathrm{PPh}_{3}\right)_{3}$ [3].

Acknowledgement

We gratefully acknowledge financial support by the Direccion General de Investigación Cientifica y Técnica (DGICYT) (PB87-0201-C03-02).

References

[^0]3 M.R. Torres, A. Santos, J. Ros and X. Solans, Organometallics, 6 (1987) 1091.
4 A. Romero, A. Vegas and A. Santos, Organometallics, 6 (1987) 1584.
5 A. Romero, A. Santos and A. Vegas, Organometallics, 7 (1988) 1988.
6 J. López, A. Romero, A. Santos, A. Vegas, A.M. Echavarren and P. Noheda, J. Organomet. Chem., 373 (1989) 249.

7 A.M. Castaño, A.M. Echavarren, J. López and A. Santos, J. Organomet. Chem., 379 (1989) 171.
8 H. Werner, U. Meyer, K. Peters and G. Schnering, Chem. Ber., 122 (1989) 2097, and references cited therein.
9 N. Ahmad, J.J. Levison, S.D. Robinson and M.F. Uttley, Inorg. Synth., 15 (1974) 48.

[^0]: 1 M.R. Torres, A. Vegas, A. Santos and J. Ros, J. Organomet. Chem., 309 (1986) 167.
 2 M.R. Torres, A. Vegas, A. Santos and J. Ros, J. Organomet. Chem., 326 (1987) 413.

