Journal of Organometallic Chemistry, 391 (1990) 219–223 Elsevier Sequoia S.A., Lausanne JOM 20853

Reactions of Ru(CO)ClH(C₅H₅N)(PPh₃)₂ with 1-alkynes

Antonio Romero, Amelia Santos, * Javier López

Instituto de Ciencia de Materiales de Madrid, Sede D, CSIC, Serrano 113, 28006 Madrid (Spain)

and Antonio M. Echavarren *

Instituto de Química Orgánica, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain) (Received February 7th, 1990)

Abstract

Ru(CO)ClH(C₅H₅N)(PPh₃)₂ reacts with an equivalent of a monosubstituted alkyne in dichloromethane to give alkenyl derivative Ru(CO)Cl((*E*)HC=CHR)-(C₅H₅N)(PPh₃)₂ (R = n-C₃H₇, n-C₆H₁₃, n-C₈H₁₇, CMe₃, Ph, COOMe, COOEt), resulting from a *cis*-insertion of the alkyne into the Ru-H bond. The reaction of the ruthenium hydride with an excess of an activated alkyne HC=CCOOR(R=Me, Et) in methanol under reflux yields the bis-insertion derivative Ru(CO)Cl[RO- $OCC=CHCH=CHCOOR](PPh_3)_2$ (R = Me, Et).

Introduction

We recently described the reactions of neutral and cationic ruthenium hydrido complexes $Ru(CO)ClH(PR_3)_2L$ (L = PPh₃, Me₂Hpz; R=Ph, p-CH₃C₆H₅) and $[Ru(CO)H(MeCN)_2(PPh_3)_2]A$ (A=ClO₄, PF₆) with alkynes [1-6]. The reaction generally involved insertion of the alkyne into the Ru-H bond, although in some instances bis-insertion derivatives [3,5,7] or unexpected products [4,5] were also isolated. We describe here a series of new alkenyl ruthenium complexes derived from the new neutral ruthenium complex Ru(CO)ClH(C₅H₅N)(PPh₃)₂ (1) by reaction with 1-alkynes RC=CH (R = n-C₃H₇, n-C₆H₁₃, n-C₈H₁₇, CMe₃, Ph, COOMe, COOEt).

Results and discussion

The reaction of hydride 1 with 1-alkynes takes place readily in dichloromethane at 23-40 °C to yield the (*E*)-alkenyl complexes 2-8 in excellent yields (eq. 1). The stereochemistry of the alkenyl ligands was assigned on the basis of the ${}^{3}J({}^{1}H-{}^{1}H)$

220

coupling constants, and is consistent with the *cis*-insertion of the 1-alkyne into the Ru-H bond observed with related ruthenium complexes [1-6,8].

$$Ru(CO)ClH(py)(PPh_3)_2 + HC = CR \rightarrow Ru(CO)Cl(HC = CHR)(py)(PPh_3)_2$$
(1)

(2: $R = n-C_3H_7$; 3: $R = n-C_6H_{13}$; 4: $R = n-C_8H_{17}$; 5: $R = CMe_3$; 6: R = Ph; 7: R = COOMe; 8: R = COOEt)

The alkenyl ruthenium complexes obtained are six-coordinate species with a stereochemistry similar to that found in the analogous dimethyl pyrazole alkenyl ruthenium complexes [5], with mutually *trans* triphenylphosphine ligands and the alkenyl group *cis* to the carbonyl ligand, in an approximately octahedral coordination. The IR spectra showed ν (C=O) frequencies at 1910–1930 cm⁻¹ for the pyridine complexes, similar to those observed for the dimethylpyrazole complexes (1923–1935 cm⁻¹); a *trans* stereochemistry between the CO and the alkenyl ligands shifts the ν (C=O) frequency to 1990 cm⁻¹ in the related complex [Ru(CO)(MeOOC=CHCOOMe)(MeCN)₂]ClO₄ [6].

When the reactions of hydride 1 with an excess of methyl or ethyl propiolate were performed in methanol under reflux for 8 h, the bis-insertion derivatives $Ru(CO)CI[ROOCC=CHCH=CHCOOR](PPh_3)_2$ (R = Me, 9; R = Et, 10) were obtained in 50-60% yield. These complexes were identical with those obtained in low yield from $Ru(CO)CIH(PPh_3)_3$ [3,7] and an excess of alkyne at room temperature. A higher temperature is probably required for the displacement of the coordinated pyridine from the insertion derivatives 7 and 8 by a second equivalent of the alkyne, which coordinates to the metal through the carbonyl oxygen [7].

Experimental

IR spectra were recorded on a Pye Unicam SP-3-300S spectrophotometer using KBr discs. Only the most significant IR frequencies are given in the details of the preparations. ¹H NMR spectra were measured on a Varian XL 300 (300 MHz) spectrometer in CDCl₃ solutions containing tetramethylsilane as internal standard. ¹³C NMR spectrum was measured on a Bruker AM 200 (50 MHz) in deuterochloroform solution with the solvent as internal standard.

All reactions were carried out under nitrogen. Dichloromethane was freshly distilled from CaH_2 under argon. Elemental analyses were performed with a Perkin-Elmer 240C Elemental Analyzer.

Ru(CO)ClH(PPh₃)₃ was prepared as described previously [9].

$Ru(CO)ClH(py)(PPh_3)_2$ (1)

A suspension of the hydride Ru(CO)HCl(PPh₃)₃ (1.19 g, 12.5 mmol) in ethanol (100 ml) containing an excess of pyridine (8.0 ml, 106 mmol) was heated under reflux for 1 h. The resulting white solid was filtered off, washed with ethyl ether and hexane and dried under vacuum to give 1 (585 mg, 61%) as a white solid. A second crop (117 mg, 12%) of hydride was obtained from the filtrate after evaporation and trituration of the residue with ethyl ether and hexane. Combined yield: 73%. IR (cm⁻¹): 2008 m, 1937 vs, 1558 w. ¹H NMR: δ 8.78-8.66 (m, 1 H, py), 8.40-7.92 (m, 1 H, py), 7.60-7.54 (m, 12 H, Ph), 7.27-7.18 (m, 19 H, 18 H Ph and 1 H py),

6.48-6.34 (m, 1 H, py), 6.32-6.20 (m, 1 H, py), -13.52 (t, J = 19.5 Hz, 1 H). Anal. Found: C, 65.37; H, 4.68; N, 1.81. $C_{42}H_{36}CINOP_2Ru$ calcd.: C, 65.58; H, 4.72; N, 1.82.

$Ru(CO)Cl(CH=CHC_3H_7)(py)(PPh_3)_2$ (2)

A solution of hydride 1 (120 mg, 0.16 mmol) and 1-n-pentyne (0.016 ml, 0.16 mmol) in dichloromethane (20 ml) was stirred at 23°C for 1 h. The solvent was evaporated and the resulting solid was triturated with ethyl ether, filtered off, dissolved in dichloromethane, and precipitated with hexane to yield 2 (130 mg, 73%) as a pale yellow powder. IR (cm⁻¹): 2950 w, 2910 w, 1910 vs, 1595 w. ¹H NMR: δ 8.50-8.45 (m, 2 H, py), 7.65-7.50 (m, 12 H, Ph), 7.35-7.21 (m, 7 H, 6 H Ph and 1 H py), 7.21-7.16 (m, 13 H, 12 H Ph and 1 H CH=), 6.58-6.65 (m, 2 H, py), 4.81-4.72 (dm, J = 16.5 Hz, 1 H, CH=), 1.88-1.80 (m, 2 H, CH₂), 1.12-1.00 (m, 2 H, CH₂), 0.66 (t, J = 7.2 Hz, 3 H, CH₃). Anal. Found: C, 67.31; H, 5.39; N, 1.66. C₄₇H₄₄ClNOP₂Ru calcd.: C, 67.42; H, 5.30; N, 1.67.

$Ru(CO)Cl(CH=CHC_6H_{13})(py)(PPh_3)_2$ (3)

A solution of hydride 1 (211 mg, 0.27 mmol) and 1-n-octyne (0.081 ml, 0.55 mmol) in dichloromethane (15 ml) was stirred at 23° C for 90 min. The mixture was concentrated to ca. 2–3 ml and treated with hexane. The solid was filtered off and washed with hexane to yield 3 (175 mg, 73%) as a pale yellow solid. IR (cm⁻¹): 2950 w, 2910 m, 1910 vs, 1595 w. ¹H NMR: δ 8.51–8.45 (m, 2 H, py), 7.55–7.49 (m, 12 H, Ph), 7.33–7.21 (m, 7 H, 6 H Ph and 1 H py), 7.20–7.14 (m, 13 H, 12 H Ph and 1 H CH=), 1.88–1.82 (m, 2 H, CH₂), 1.23–1.00 (m, 8 H, 4 CH₂), 0.82 (t, J = 7.0 Hz, 3 H, CH₃). Anal. Found: C, 68.17; H, 5.74; N, 1.60. C₅₀H₅₀ClNOP₂Ru calcd.: C, 68.29; H, 5.73; N, 1.59.

$Ru(CO)Cl(CH=CHC_8H_{17})(py)(PPh_3)_2$ (4)

A solution of hydride 1 (144 mg, 0.18 mmol) and 1-n-decyne (0.07 ml, 0.39 mmol) in dichloromethane (15 ml) was stirred at 23°C for 90 min. The mixture was treated as above to yield 4 (155 mg, 91%) as a pale yellow solid with identical IR to that of 3. The ¹H NMR was also identical except for the multiplet at 1.23–1.00 corresponding to 12 H (6 CH₂). Anal. Found: C, 68.79; H, 6.01; N, 1.55. $C_{52}H_{54}CINOP_2Ru$ calcd.: C, 68.82; H, 6.00; N, 1.54.

$Ru(CO)Cl(CH=CHCMe_3)(py)(PPh_3)_2$ (5)

A solution of hydride 1 (105 mg, 0.14 mmol) and 3,3-dimethyl-1-butyne (0.017 ml, 0.14 mmol) in dichloromethane (20 ml) was heated under reflux for 1 h, then evaporated. The residue was triturated with ethyl ether and the residual solid dissolved in dichloromethane and re-precipitated with hexane to give 5 (81 mg, 70%) as a greenish-yellow powder. IR (cm⁻¹): 2950 m, 1930 vs, 1595 w. ¹H NMR: δ 8.51-8.49 (m, 2 H, py), 7.55-7.49 (m, 12 H, Ph), 7.22-7.18 (m, 7 H, 6 H Ph and 1 H py), 7.17-7.11 (m, 13 H, 12 H Ph and 1 H CH=), 6.60-6.55 (m, 2H, py), 4.82 (dt, J = 16.2 Hz, 1.6 Hz, =CH), 0.64 (s, 9 H, CMe₃). Anal. Found: C, 67.85; H, 5.46; N, 1.66. C₄₈H₄₆CINOP₂Ru calcd.: C, 67.72; H, 5.45; N, 1.66.

$Ru(CO)Cl(CH=CHPh)(py)(PPh_3)_2$ (6)

A solution of hydride 1 (100 mg, 0.13 mmol) and phenylacetylene (0.014 ml, 0.13 mmol) in dichloromethane (20 ml) was heated under reflux for 1 h. The solution was

evaporated and the residue was triturated with ethyl ether to give 6 (97 mg, 86%) as a crystalline light yellow solid. IR (cm⁻¹): 1920 vs, 1593 m, 1540 m. ¹H NMR: δ 8.75 (dt, J = 16.9, 3.2 Hz, 1 H, CH=), 8.53–8.51 (m, 2 H, py), 7.54–7.45 (m, 12 H, Ph), 7.28–7.20 (m, 7 H, 6 H Ph and 1 H py), 7.18–7.07 (m, 14 H, 12 H Ph and 2 H PhCCH), 6.90 (t, J = 7.1 Hz, 1 H, PhCCH), 6.85 (d, J = 7.3 Hz, 2 H PhCCH), 6.58 (t, J = 6.9 Hz, 2 H py), 5.78 (br d, J = 16.9 Hz, CH=). ¹³C{¹H} NMR: δ 203.20 (t, J = 14.5 Hz), 154.00 (s), 153.77 (t, J = 14.5 Hz), 141.11 (s), 138.34 (s), 135.23 (s), 134.30 (t, J = 5.0 Hz, Ph₃P), 132.47 (t, J = 20.3 Hz, Ph₃P), 129.10 (s, Ph₃P), 127.67 (s), 127.40 (t, J = 4.5 Hz, Ph₃P), 124.19 (s), 123.61 (s), 123.40 (s). Anal. Found: C, 69.02; H, 4.89; N, 1.61. C₅₀H₄₂CINOP₂Ru calcd.: C, 68.92; H, 4.87; N, 1.61.

$Ru(CO)Cl(CH=CHCOOMe)(py)(PPh_3)_2$ (7)

A solution of hydride 1 (105 mg, 0.14 mmol) and methyl propiolate (0.012 ml, 0.14 mol) in dichloromethane (20 ml) was stirred at 23° C for 1 h. The solvent was evaporated and the residue was triturated with ethyl ether to give 7 (98 mg, 82%) as a light yellow solid. IR (cm⁻¹): 2950 w, 1928 vs, 1686 s, 1599 w, 1528 s. ¹H NMR: δ 10.46 (dt, J = 16.8, 1.9 Hz, CH=), 8.48-8.47 (m, 2 H, py), 7.48-7.41 (m, 12 H, Ph), 7.30-7.22 (m, 7 H, 6 H Ph and 1 H py), 7.21-7.14 (m, 12 H, Ph), 6.62 (t, J = 6.9 Hz, 2 H py), 5.61 (br d, J = 16.8 Hz, CH=), 3.50 (s, 3 H, Me). Anal. Found: C, 64.81; H, 4.74; N, 1.63. C₄₆H₄₀CINO₃P₂Ru calcd.: C, 64.76; H, 4.73; N, 1.64.

$Ru(CO)Cl(CH=CHCOOEt)(py)(PPh_3)_2$ (8)

A procedure analogous to that above gave 8 as a light yellow solid in 85% yield. IR (cm⁻¹): 2950 w, 2910 w, 1920 vs, 1680 s, 1598 w, 1527 s. ¹H NMR: δ 10.42 (br d, J = 16.6 Hz, CH=), 8.48–8.47 (m, 2 H, py), 7.48–7.42 (m, 12 H Ph), 7.30–7.21 (m, 7 H, 6 H Ph and 1 H py), 7.20–7.14 (m, 12 H Ph), 6.62 (t, J = 6.5 Hz, 2 H py), 5.59 (dt, J = 16.6, 1.5 Hz, CH=), 3.95 (q, J = 7.1 Hz, 2 H, CH₂), 1.16 (t, J = 7.1 Hz 3 H, CH₃). Anal. Found: C, 65.18; H, 4.90; N, 1.62. C₄₇H₄₂ClNO₃P₂Ru: C, 65.09; H, 4.88; N, 1.61.

$Ru(CO)Cl[MeOOCC=CH-CH=CHCOOMe](PPh_3)_2$ (9)

A suspension of hydride 1 (312 mg, 0.4 mmol) and methyl propiolate (0.14 ml, 1.6 mmol) in methanol (50 ml) was heated under reflux for 8 h. The resulting yellow solid was filtered off, washed with methanol and ethyl ether, and dried to give 9 (170 mg, 49%). A second fraction was obtained from the filtrate after evaporation and treatment with hexane (31 mg, 9%; combined yield: 201 mg, 58%). The product was identical with that obtained from Ru(CO)CIH(PPh₃)₃ [3,7]. The corresponding reaction of ethyl propiolate gives Ru(CO)CI[EtOOCC=CH-CH=COOEt](PPh₃)₂ (10) in 55% yield, identical with that prepared from Ru(CO)CIH(PPh₃)₃ [3].

Acknowledgement

We gratefully acknowledge financial support by the Dirección General de Investigación Científica y Técnica (DGICYT) (PB87-0201-C03-02).

References

¹ M.R. Torres, A. Vegas, A. Santos and J. Ros, J. Organomet. Chem., 309 (1986) 167.

² M.R. Torres, A. Vegas, A. Santos and J. Ros, J. Organomet. Chem., 326 (1987) 413.

- 3 M.R. Torres, A. Santos, J. Ros and X. Solans, Organometallics, 6 (1987) 1091.
- 4 A. Romero, A. Vegas and A. Santos, Organometallics, 6 (1987) 1584.
- 5 A. Romero, A. Santos and A. Vegas, Organometallics, 7 (1988) 1988.
- 6 J. López, A. Romero, A. Santos, A. Vegas, A.M. Echavarren and P. Noheda, J. Organomet. Chem., 373 (1989) 249.
- 7 A.M. Castaño, A.M. Echavarren, J. López and A. Santos, J. Organomet. Chem., 379 (1989) 171.
- 8 H. Werner, U. Meyer, K. Peters and G. Schnering, Chem. Ber., 122 (1989) 2097, and references cited therein.
- 9 N. Ahmad, J.J. Levison, S.D. Robinson and M.F. Uttley, Inorg. Synth., 15 (1974) 48.